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Abstract

Wiener chaos expansions are being evaluated for the representation of stochastic variability in the response of nonlinear

aeroelastic systems, which often exhibit limit cycles. Preliminary studies with a simple nonlinear aeroelastic computational

model have shown that the standard non-intrusive Wiener–Hermite expansion fails to maintain time accuracy as the

simulation evolves. Wiener–Hermite expansions faithfully reproduce the short-term characteristics of the process but

consistently lose energy after several mean periods of oscillation. This energy loss remains even for very high-order

expansions. To uncover the cause of this energy loss and to explore potential remedies, the more elementary problem of a

sinusoid with random frequency is used herein to simulate the periodic response of an uncertain system. As time

progresses, coefficients of the higher order terms in both the Wiener–Hermite and Wiener–Legendre expansions

successively gain and lose dominance over the lower-order coefficients in a manner that causes any fixed-order expansion in

terms of global basis functions to fail over a simulation time of sufficient duration. This characteristic behavior is

attributed to the continually increasing frequency of the process in the random dimension. The recently developed

Wiener–Haar expansion is found to almost entirely eliminate the loss of energy at large times, both for the sinusoidal

process and for the response of a two degree-of-freedom nonlinear system, which is examined as a prelude to the stochastic

simulation of aeroelastic limit cycles. It is also found that Mallat’s pyramid algorithm is more efficient and accurate for

evaluating Wiener–Haar expansion coefficients than Monte Carlo simulation or numerical quadrature.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The need to revolutionize methods of assessing aeroelastic stability has become increasingly pressing in
recent years. This is driven primarily by two factors: (1) the desire to greatly reduce the total cost of
certification by reducing testing requirements, and (2) the emergence of unique design concepts intended to
provide impressive performance gains, especially in military applications. A common feature of these designs
is that they substantially increase the potential for nonlinear behavior beyond levels that can be adequately
addressed by current engineering tools and processes.
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Nomenclature

HejðxÞ jth polynomial chaos of x
L2ðRÞ set of square-integrable real-valued func-

tions on R

mðyÞ ¼ dM=dy probability density function
MðyÞ ¼ mðð�1; y�Þ probability distribution func-

tion
N number of time samples
n number of process realizations
P order of polynomial chaos expansion
PðjÞ projection on jth scale of Haar basis
PrðyÞ probability of event y
R set of real numbers

t time
xðt; xÞ random process
x̂jðtÞ polynomial chaos coefficient
y an allowable value of a random variable
Z set of integers
z uniform random variable
y random variable
mðð�1; y�Þ probability distribution
x random variable
so standard deviation of frequency
o angular frequency
o0 mean angular frequency
h�i expected value operator
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These issues were the focus of a recent workshop organized by the Air Force Office of Scientific Research
(AFOSR) and the Air Force Research Laboratory (AFRL) [1]. The workshop addressed traditional areas of
concern, such as the basic physics and computational requirements of nonlinear aeroelasticity, but it also
included sessions on model verification and validation (V&V) as well as the role of uncertainty quantification
(UQ) in understanding the physics of nonlinear aeroelasticity and certifying aeroelastic stability. The
participants of the workshop developed a strong consensus that UQ must play a prominent role in future
aeroelasticity research; in particular, it was agreed that UQ could provide a common language for promoting
communication between analysts and test personnel.

Probabilistic methods for linear systems have been employed in gust analysis [2] for several decades, but
probabilistic study of aeroelastic stability is a relatively recent development. Current research trends differ
conceptually from standard gust analysis, which assumes variability only in the gust velocity and depends on
linear structural dynamics to develop equivalent static design loads; thus, gust analysis forces an inherently
probabilistic process to conform to our deterministic engineering philosophy. In contrast, recent research is
the outgrowth of a more holistic perspective on the role of uncertain system and environment properties in
establishing the probability of aeroelastic stability. This approach can produce insight in all aeroelastic
stability studies, but the payoff likely will be greatest in analyzing the time-dependent behavior of nonlinear
systems owing to their generally higher sensitivity [3–6].

Liaw and Yang [7,8] examined aeroelasticity of laminated plates and shells with uncertainties in several
structural and geometric parameters. Their work appears to represent the first published application of a
stochastic finite element method (SFEM) to the analysis of aeroelastic stability. Their approach involved a
second-moment, perturbation-based stochastic finite element model. They described the effects of variability
on the likely range of responses, but because they employed a second-moment formulation, quantification of
output variability was limited to estimates of the amplitude standard deviation.

Lindsley et al. [9–11] also studied limit-cycle oscillations (LCO) of panels with spatial variability in the
modulus of elasticity and the thermal expansion coefficient, but they employed Monte Carlo simulation
(MCS) to better quantify the distribution of response variability in this nonlinear system. They limited their
analysis to square panels and isotropic materials, but also included the influence of non-ideal boundary
conditions (BCs) so as to measure the relative importance of uncertainty in material properties and BCs. These
studies showed that relatively minor levels of variability in system parameters, loads, and BCs can induce
significant changes in the stability of nonlinear aeroelastic systems.

Given the high computational cost associated with time-accurate simulation of practical stochastic systems,
stochastic expansions are being pursued both to accelerate the analysis and to provide a mathematical basis
for assessing the convergence of the response statistics [12,13]. Aeroelastic limit cycles, which commonly are
referred to as LCO, are known to be sensitive to parametric uncertainty [3], so our goal is to investigate the
suitability of stochastic expansions to modeling the occurrence and variability of LCO.
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As a first step in this direction, we have formulated a model problem that exhibits the essential temporal
characteristics of limit cycles. This simple problem involves a sinusoidal process for which the frequency of
each realization is a random variable. It is found that the common spectral stochastic expansion, such as the
Wiener–Hermite (WHe) and Wiener–Legendre (WLe) expansions, perform poorly in the time domain
modeling of periodic processes; specifically, non-intrusive WHe and WLe expansions faithfully reproduce the
short-term characteristics of the sinusoidal process but consistently lose energy after several mean periods of
oscillation. This energy loss remains even for very high-order expansions, which suggests that spectral
stochastic expansions should not be employed to model limit cycles. This does not appear to have been
discussed thoroughly in the literature, so we carefully explore the sinusoidal model problem with the goal of
motivating alternative methods for simulating systems that exhibit LCO.

Millman et al. [14] have also noted the failure of spectral stochastic expansions for representing limit cycles.
The present paper is somewhat complementary in that Millman et al. did not analyze the convergence
difficulties in detail; instead, they proposed a modified Wiener expansion that employed Fourier basis
functions on a truncated random domain. Also, they employed a Galerkin projection of the governing
equations onto the Fourier-based chaoses instead of the MCS approach employed herein. Their Fourier-based
approach partially resolved the large-time inadequacy of the WHe expansion, but the probabilistic
convergence was inadequate, especially in the tails of the response distribution.

An alternative means of overcoming the loss of energy in Wiener-based simulation of limit cycles is
demonstrated herein. Haar basis functions [15,16] are used instead of global (e.g., Hermite or Legendre) basis
functions in the random dimension to provide a localized representation of the stochastic process’s temporal
evolution. It is demonstrated below that the efficacy of this wavelet-based expansion follows from its ability to
localize the continually increasing nonlinearity of the process in the random dimension. Two approaches for
evaluating the Wiener–Haar (WHa) expansion coefficients are presented and compared. One is based on
MCS; the other uses Mallat’s pyramid algorithm, which is commonly referred to as the discrete wavelet
transform.
2. Chaos expansions of stochastic processes

The theory of global and local Wiener chaos expansion is presented along the line established recently by Le
Maı̂tre et al. [16]. The discussion begins with a brief description of the probability nomenclature employed
throughout the subsequent discussion. This is followed in turn by summaries of single variable polynomial
chaos expansions (PCE), wavelet or multiresolution analysis and synthesis of deterministic functions, and the
marriage of Wiener expansions with multiresolution analysis.
2.1. Probability background

We assume y is an outcome in a probability space, xðyÞ is a random variable (rv) that maps outcomes
from the probability space to R, and y 2 R is a possible value of x. This rv follows a specified distribution
function,

MxðyÞ ¼ mxðð�1; y�Þ ¼ Pr½y : xðyÞpy�,

where the induced measure, m, is the associated distribution of x. We assume that MxðyÞ is continuous and
strictly increasing. Under these conditions, dMxðyÞ ¼ mxðyÞdy defines the probability density induced by xðyÞ
and there exists for any z 2 ½0; 1� a unique fy : MxðyÞ ¼ zg; furthermore, this mapping can be inverted to obtain
y ¼M�1

x ðzÞ. In the applications considered here, the rv xðyÞ is assumed to be a random system property and
xðt; xðyÞÞ, a stochastic process, is the associated response. With these definitions, an individual realization of
the process is xðt; yÞ.

The expected value operator of the process for any time t is written as

ExðtÞ ¼ hxðt; xÞi ¼
Z

xðt; xðyÞÞPrðdyÞ ¼
Z 1
�1

xðt; yÞdMxðyÞ. (1)
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2.2. Global bases for the random dimension

Only the primary ingredients of PCE are summarized here. Ghanem and Spanos [12] present a
comprehensive development of the theory, and Xiu and Karniadakis [13,17], Le Maı̂tre et al. [18], and Walters
[19] describe some relevant recent applications.

The PCE provides an orthogonal expansion of a random process whose covariance operator is unknown,
such as the response of a nonlinear system to a normal or non-normal input. Instead of expanding the process
in terms of normal rvs, as in the Karhunen–Loeve expansion [12,20], the underlying random variables are
replaced by orthogonal polynomials of random variables, which often are assumed to be normal or uniform.
When the variables are normal, this expansion is also known as the Hermite chaos or WHe expansion because
the Hermite polynomials are orthogonal with respect to the Gaussian measure. If the rv are uniformly
distributed on some finite interval or rectangle, a similar expansion can be employed with the Legendre
polynomials as the basis; this will be referred to as the WLa expansion. The WLe development is omitted
because it directly parallels that which is presented here for WHe. Generalized PCE for other probability
distributions and their associated bases have been described recently by Xiu and Karniadakis [13].

Our presentation assumes that the process of interest, xðt; xÞ, is governed by a single Gaussian random
variable, x, which can always be normalized to have zero mean value and unit standard deviation. The
stochastic process is approximated by a truncated series,

xðt; xðyÞÞ ¼
XP

j¼0

x̂jðtÞHejðxðyÞÞ, (2)

where fx̂jðtÞg are generalized Fourier coefficients and fHejðxÞg are the Hermite polynomials in x, which are
orthogonal with respect to the Gaussian measure, dMxðyÞ ¼ e�y2=2 dy; these polynomials are referred to as the
polynomial chaoses. The expansion in Eq. (2) is guaranteed to converge as P!1 for any square-integrable
process, where square-integrability must be with respect to the Gaussian probability measure. Expansions for
multiple rv can be developed by extending the single-variable relations into product spaces of independent
normal random variables [12].

The Hermite polynomials can be generated from the following recurrence relation:

He0 ¼ 1; He1 ¼ x; Hej ¼ xHej�1 � ðj � 1ÞHej�2. (3)

In terms of the expected value operator defined in Eq. (1), these satisfy hHeiHeji ¼ 0 for iaj; that is, the
polynomial chaoses are statistically orthogonal and the generalized Fourier coefficients can be evaluated
directly:

x̂jðtÞ ¼
hxHeji

hHe2j i
. (4)

The denominator in Eq. (4) can be shown to satisfy hHe2j i ¼ j!, so the key step in projecting xðt; xÞ on the
polynomial chaoses is the evaluation of hxHeji. Eqs. (2)–(4) can be combined to show that x̂0ðtÞ represents the
time-dependent expected value of the process and

PP
j¼1ðx̂jðtÞÞ

2 approaches the time-dependent variance as
P!1.

Standard MCS was employed in this study to estimate the expected value in Eq. (4). More efficient
approaches that could be considered for practical implementation include the many variance reduction or
efficient sampling techniques [21,22], which should improve the convergence of the MCS, and Gauss–Hermite
quadrature of the integral in Eq. (1). However, the results presented below show that oscillatory random
processes become increasingly oscillatory in the random dimension as time progresses; moreover, bifurcations
can make these functions discontinuous. These observations suggest that even Gauss quadrature would
require many samples to yield acceptable accuracy. We do not address this question further herein. Given the
computational expense associated with realistic aeroelastic simulations, some combination of efficient
sampling and reduced-order physics models will likely be required for more complex problems. Pettit [6]
discusses this concern in slightly greater depth.
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2.3. Local bases for the random dimension

Results provided below show that the global PCE bases are inadequate for representing stochasticity of
limit cycles. A wavelet-based generalization of the PCE is described here in preparation for its use to address
this inadequacy. The discussion is limited to the Haar basis, which constitutes the most elementary
multiresolution analysis (MRA) of L2ðRÞ [15,23].

2.3.1. Haar wavelet series

The Haar scaling function is defined by

fðtÞ ¼ I½0;1ÞðtÞ ¼
1; 0pto1;

0 otherwise;

(
(5)

where I½a;bÞðtÞ is the indicator function for t 2 ½a; bÞ. Scaled and translated version of fðtÞ are written as

fðjÞk ¼ 2j=2fð2j t� kÞ, (6)

where j 2 fZX0g, k 2 ½0; 2j � 1�, and the scale factor, 2j=2 is chosen so that kfðjÞk k ¼ 1.
Let xðtÞ be a square-integrable function on the unit interval. Each scale or dilation factor j defines a space,

Vj ¼ spanffðjÞk g, of piecewise constant functions such that Vj�1 � V j. The set ff
ðjÞ
k g forms a partition of ½0; 1Þ.

Let PðjÞx be the projection of x onto Vj ; then

PðjÞx ¼
X2j�1

k¼0

c
ðjÞ
k fðjÞk ðtÞ (7)

and the projection coefficients are given by the inner product

c
ðjÞ
k ¼

Z 1

0

xðtÞfðjÞk ðtÞdt. (8)

Increasing j therefore produces a higher resolution projection, so that the sequence of spaces fV jg
1
j¼0 comprise

a MRA of L2ð½0; 1ÞÞ. Scaling the unit interval extends this to a MRA of L2ðRÞ.
Because V j�1 � V j, the projection Pðj�1Þx leaves behind a detail function wðj�1Þ 2 V j, which is the difference

between two resolution levels:

wðj�1Þ ¼ PðjÞx� Pðj�1Þx. (9)

This difference can be represented in terms of the Haar wavelets, which are based on the piecewise-constant
mother wavelet:

cðtÞ ¼

1; 0pto1=2;

�1; 1=2pto1;

0 otherwise:

8><>: (10)

An orthonormal basis for L2ðRÞ is composed of all possible integer-valued translations and dilations
of cðtÞ,

cðjÞk ðtÞ ¼ 2j=2cð2j t� kÞ; j; k 2 Z, (11)

which satisfy kcðjÞk ðtÞk ¼ 1; therefore, any square-integrable function can be expanded in a Haar wavelet
series,

xðtÞ ¼
X
j;k

d
ðjÞ
k cðjÞk ðtÞ (12)

and the generalized Fourier coefficients can be evaluated as

d
ðjÞ
k ¼

Z 1
�1

xðtÞcðjÞk ðtÞdt. (13)



ARTICLE IN PRESS
C.L. Pettit, P.S. Beran / Journal of Sound and Vibration 294 (2006) 752–779 757
As for the scaling function, limiting the translation index to k 2 f0; . . . ; 2j � 1g restricts the domain to the unit
interval, t 2 ½0; 1Þ; therefore, the detail function can be synthesized from the wavelets at scale j � 1,

wðj�1Þ ¼
X2j�1

k¼0

d
ðj�1Þ
k cðj�1Þk ðtÞ (14)

and the projection PðjÞx can be expanded as

PðjÞx ¼ Pðj�1Þxþ
X2ðj�1Þ�1
k¼0

d
ðj�1Þ
k cðj�1Þk ðtÞ ¼ Pð0Þxþ

Xj�1
m¼0

X2m�1

k¼0

d
ðmÞ
k cm

k ðtÞ, ð15Þ

¼ c0fðtÞ þ
Xj�1
m¼0

X2m�1

k¼0

d
ðmÞ
k cm

k ðtÞ. ð16Þ

As noted above, this decomposition can be extended directly to functions with compact support on any
interval (i.e., t 2 ½a; bÞ where �1oaobo1). In practice, the upper resolution limit, J ¼ maxðjÞ, must be
determined by the resolution needed to retain the scales that contain significant energy. If t is restricted to a
discrete set by a sampling process, the sampling interval naturally establishes an upper bound on J.

2.3.2. Wiener– Haar expansion

The localized behavior of a stochastic process in the random dimension can be represented by generalizing
the Haar wavelet series described above. This approach represents a marriage of the wavelet series, which is
more commonly applied to functions of time or space, with the Wiener chaos expansion. The stochastic
process, xðt; xÞ, is written as a WHa expansion in which the wavelet coefficients, d

ðjÞ
k ðtÞ, are functions of time or

space and the wavelet series decomposes the random dimension of the process. As noted earlier, our
development follows Le Maı̂tre et al. [16].

The random variable xðyÞ is assumed to be restricted to a finite interval ½a; b� � R. The extension of the Haar
wavelets, cðjÞk , from the unit interval to x 2 ½a; b� is defined by

CðjÞk ðxÞ ¼ cðjÞk ½PrðxðyÞÞ�, (17)

so that individual realizations satisfy

CðjÞk ðyÞ ¼ cðjÞk ðzÞ, (18)

where y is a realization of x and z is a realization of a uniform rv on ½0; 1�. This works for any MðyÞ that is
continuous and strictly increasing on ½a; b�, so that z ¼MðyÞ is one-to-one and invertible. With this definition,
the orthonormality of the Haar wavelets leads toZ 1

0

cðjÞk ðzÞc
ðlÞ
n ðzÞdz ¼

Z b

a

CðjÞk ðyÞC
ðlÞ
n ðyÞdMðyÞ ¼ dj;ldk;n, (19)

i.e., the wavelets fCðjÞk ðxÞg are orthonormal with respect to the distribution of x and form a MRA of the space
of second-order random processes on ½a; b� with continuous distributions. The associated inner product is

huvi ¼

Z b

a

uðyÞvðyÞmðyÞdy, (20)

where mðyÞ is the associated density.
With these preliminary considerations in place, the WHa expansion is written as

xðt; xðyÞÞ ¼ x0ðtÞ þ
X1
j¼0

X2j�1

k¼0

d
ðjÞ
k CðjÞk ðxðyÞÞ, ð21Þ

¼ x0ðtÞ þ
X1
j¼0

X2j�1

k¼0

d
ðjÞ
k cðjÞk ðPrðxÞÞ, ð22Þ
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where the scaling function coefficient

x0ðtÞ ¼ Pð0Þx, ð23Þ

¼

Z 1

0

xðt;M�1ðzÞÞf0ðzÞdz, ð24Þ

¼

Z b

a

xðt; yÞdMðyÞ ¼ hxðt; xÞi ð25Þ

is the expected value of the process at time t, and the wavelet coefficients are

d
ðjÞ
k ðtÞ ¼

Z 1

0

xðt;M�1ðzÞÞcðjÞk ðzÞdz, ð26Þ

¼

Z b

a

xðt; yÞCðjÞk ðyÞdMðyÞ ¼ hxðt; xÞCðjÞk ðxÞi. ð27Þ

As for the PCE, the orthogonality of the Haar basis can be used to show that the variance of the process

at each time is
P1

j¼0

P2j�1
k¼0 ðd

ðjÞ
k Þ

2.

2.3.3. Evaluation of the Wiener– Haar coefficients

In practice, the resolution will be truncated to some finite J ¼ maxðjÞ. Furthermore, most expansions will be
for discrete stochastic processes (i.e., time series), so there is no harm in assuming that the stochastic process is
a correlated random vector; i.e., time t belongs to a discrete index set. In this study, we also assume for
simplicity that only a single continuous, uniformly distributed random variable is of interest; thus, we can
write the process as xðxÞ where the dimension, N, of x is equal to the number of time samples.

Under these conditions, the Wiener–Haar series, Eq. (21), can be written as

xðxÞ � x0 þ
XJ

j¼0

X2j�1

k¼0

d
ðjÞ
k cðjÞk ðPrðxÞÞ, (28)

where fx; x0; d
ðjÞ
k g 2 RN . The expansion coefficient vectors can be evaluated using the inner product relations

defined above; i.e.,

d
ðjÞ
k ¼

Z 1

0

xðM�1ðzÞÞcðjÞk ðzÞdz. (29)

Because z is uniformly distributed on ½0; 1�, Eq. (29) is the expected value of the integrand; that is,

d
ðjÞ
k ¼ hxc

ðjÞ
k i �

1

n

Xn

i¼1

xðM�1ðziÞÞc
ðjÞ
k ðziÞ (30)

for an ensemble of n time histories, each observed at N equally separated points in time. This expression is
implemented below through standard MCS to generate the n realizations of the process.

Standard numerical integration methods might also be considered as candidates for evaluating d
ðjÞ
k . This

approach was explored using both the trapezoidal rule and Simpson’s rule for comparison; however, like
MCS, this approach is inefficient in practice because the current application requires a complete set of wavelet
coefficients at each time step. We found that the convergence of the expansion coefficients from numerical
integration was similar to those from MCS, so this approach will not be discussed further herein.

MCS and numerical quadrature both approach the evaluation of the coefficients as a projection operation
that requires the computation of inner products. They do not take advantage of the potential efficiency
embedded in the filter-based approach to the wavelet transform. Mallat’s pyramid algorithm [15] for the
discrete wavelet transform (DWT) is much quicker and, as will be demonstrated, yields Wiener–Haar
coefficients that reproduce the process with significantly greater accuracy than MCS or numerical integration.
The details of this algorithm are readily available in the standard wavelet literature, e.g., Burrus et al. [15] or
Strang and Nguyen [24]. The DWT results presented herein are for n ¼ 2Jþ1 evenly spaced samples of
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z 2 ½0; 1�. This restriction was imposed to simplify the implementation of the DWT algorithm by avoiding the
need to compensate for boundary distortion that occurs when the signal’s length is not a power of two [24,25].
Very localized boundary effects still remain in some of the results because no extension scheme was used, but
this does not detract noticeably from the quality of the results.

3. Spectral Wiener expansions of a sinusoidal problem formulation

A model problem is examined next to demonstrate the poor large-time PCE convergence and to elicit its
cause. The WHa expansion is employed to represent a sinusoidal stochastic process, X ðtÞ ¼ sinoðxÞt. The
frequency is assumed to be a Gaussian random variable, o ¼ o0 þ sox, where x is a standard Gaussian
random variable, o0 ¼ 2p, and the coefficient of variation (COV) is so=o0 ¼ 0:10. Although a sinusoid with
uniformly distributed random phase is a common textbook example (e.g., Ref. [20]), we were unable to locate
a clear discussion of the more general non-stationary stochastic process described here; hence, we offer a
detailed presentation of its features. The expansion coefficients, fx̂jðtÞg

P
j¼0, are approximated with a standard

MCS of 1000 realizations, each containing 1000 time samples from t ¼ 0 to 10. This time range includes 10
complete cycles at the mean frequency. The early evolution of the process is illustrated in Fig. 1, which
overlays 50 realizations from t ¼ 0 to 3.

With the specifications just given, two Hermite chaos expansions were generated, with P ¼ 6 and 10 in
Eq. (2). The resulting fx̂jðtÞg

P
j¼0 are shown in Figs. 2 and 3, respectively. Each x̂j is oscillatory, but it is also

localized in time because the spectral distribution of the energy in the random dimension shifts to higher
polynomial chaoses (i.e., modes in the random dimension) as time progresses.

This non-stationary behavior is also evident in the probability density function (pdf) at various time slices,
which are depicted in Fig. 4. These pdf are estimated from the original MCSs data; i.e., they do not yet reflect
the projection onto the Hermite basis. At t ¼ 1, the pdf is approximately symmetric about x ¼ 0, but as time
progresses, the pdf begins to appear stationary and develops peaks near x ¼ �1 with a valley around x ¼ 0.
This shape is reminiscent of the well-known distribution of a sinusoid with uniformly random phase between 0
and 2p [20].

A successful stochastic expansion of the sinusoidal random process ought to reproduce the non-stationary
traits exhibited by the pdf in Fig. 4. The PCE produces a mean-square convergent representation of a second-
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Fig. 1. Fifty realizations of the sinusoidal process with random frequency.
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Fig. 2. Generalized Fourier coefficients for sixth-order polynomial chaos expansion of sine wave with random frequency. Vertical axes

show hxHeji=hHe2j i for each order j from 0 to 6.
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order random process, but there is no guarantee that the expansion will converge equally quickly at each time.
Furthermore, Li and Ghanem [26] observed that the PCE converges slowly for some nonlinear processes. We
show herein that as time progresses, the increasing nonlinearity in the random dimension is responsible for the
poor PCE convergence at large times.

3.1. Evolution of spectral Wiener expansions of the sinusoidal process

For the sinusoidal process, the shifting of energy to higher modes can be explained intuitively for the first
few modes. This explanation is motivated by the visual evidence in Fig. 1. Consider the mean component
(He0 ¼ 1) first. Fig. 1 shows that for frequency variations that are small with respect to the mean frequency,
the sinusoidal realizations remain highly correlated for about the first quarter-cycle; this is especially true
during the initial time steps, when the evolution of the sinusoid is close to a linear function of its frequency.
This translates initially to linear growth in x̂0 for to0:25 approximately, whereas the other modes contribute
almost nothing to this portion of the process. As time progresses, the frequency variations force the individual
realizations to disperse so that xðtÞ eventually becomes equally likely to be positive or negative at any time
step; consequently, the mean term must approach zero. This occurs as a decaying oscillation at what appears
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to be the mean frequency of the process. This observation is corroborated by expanding sinot for small
changes in o; i.e., sinot ¼ sinðo0 þ DoÞt where jDo=o0j51. Taking the expected value of this for Do ¼ sox
leads to

hsinoti ¼ sino0thcos soxti þ coso0thsin soxti.

This expression can be simplified by recognizing that hsin soxti is zero for all t if x is symmetric around zero.
This can be seen directly by expanding sin soxt in a Taylor series:

sin soxt ¼ soxt� 1
6
ðsoxtÞ3 þ 1

30
ðsoxtÞ5 þ � � � .

For x symmetrically distributed around zero, hx2kþ1
i ¼ 0 for all k 2 N. Enforcing this condition shows that

hsin soxti ¼ 0 for all t.
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If we also expand cos soxt in a Taylor series, recall that hx2k
i ¼ 1 for a uniform rv, and retain only the first

three terms, we are left with

hsinoti ¼ ½1� 1
2
ðsotÞ2 þ 1

24
ðsotÞ4 � � � �� sino0t. (31)

This approximate relation shows that hsinoti should decay at the mean frequency of the process for small t.
Fig. 4 shows that the pdf of x at t ¼ 1 has a relatively broad central peak near x ¼ 0, so the response is

almost equally likely to be positive or negative by this time. The absolute value of the response is of course less
than or equal to one, so the resulting pdf is qualitatively similar to a truncated Gaussian. Given that He1 ¼ x,
this observation accounts for the prominence of x̂1 for 1ptp3. As noted above, this unimodal pdf is
temporary and the process approaches a bimodal pdf for larger times; consequently, the first-order mode must
also diminish over time.

For t43 (i.e., when multiple cycles have occurred), the randomness of o causes ot to be distributed more
uniformly throughout the 2p interval, when the periodicity of sinot is enforced; that is, further increasing the
time value has little effect because the sine function is bounded and multi-valued. This explains the observed
transition to stationary behavior similar to the sine function with random phase; in fact, this trend can be
inferred from Fig. 1. Fig. 5, which shows the evolution of the standard deviation, suggests that the process is at
least wide-sense stationary by t ¼ 3; further examination of the density functions in Fig. 4 indicates that the
process tends toward being stationary in the strict sense as well. Finally, note that the early oscillations in
Fig. 5 occur at approximately twice the mean frequency of the process. This empirical result can be demonstra-
ted analytically by expanding sinot as before. The required algebra is too extensive to include here, but it
leads to an expression of the form

VarðsinotÞ � f 1ðtÞsin
2o0tþ f 2ðtÞcos

2o0t,
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where f 1ðtÞ is a fourth-order monomial in t and f 2ðtÞ is a sixth-order polynomial in t. The presence of the
sin2o0t and cos2o0t terms accounts for the observed oscillation at approximately 2o0 in the standard
deviation during its evolution.

3.2. Wiener– Hermite and Wiener– Legendre simulations of the sinusoidal process

The observed time-dependent behavior of the PCE coefficients has severe consequences for the time-
accurate simulation of processes with periodic sample paths. Fig. 6 shows three realizations of the simulated
process, each of which is based on Eq. (2) truncated at a particular value of P. Although the early oscillations
appear similar to the original data, albeit with some surprisingly large amplitude variations between
realizations (see Fig. 7), even relatively high-order expansions exhibit a characteristic decay at large times. In
theory, the slow convergence can be compensated for by employing many more modes, but this is impractical.
As Fig. 6 shows, a 14th-order expansion only delays the loss of energy. Results not presented here show that
even a 20th-order expansion only delays the energy loss for approximately one more cycle. This indicates that
the PCE is not well-suited for time-accurate simulation of essentially periodic processes. Short-time behavior is
represented reasonably well by a low-order expansion, but economical expansions cannot be obtained for
simulation runs longer than a few mean periods.

Similar characteristics were observed in WLa expansions of sinoðxÞt. In this case, x was assumed to be a
uniform rv on ½�1;þ1� and o ¼ 2pþ sox. Values of COV ¼ so=2p were assumed between 0.1 and 0.3 to
examine the effect of the relative frequency range. COV ¼ 0:1 produced less severe but still noticeable large-
time decay because the associated range of possible frequencies was smaller than in the Gaussian case.
COV ¼ 0:3 produced a range of frequencies similar to those sampled from the Gaussian distribution, but with
a higher likelihood of extreme frequencies. Many of the resulting WLa realizations were more erratic at large
time values than their WHa counterparts; a small minority actually grew in amplitude. Fig. 8 shows these
traits in realizations from a 10th-order WLa expansion.

An intuitive interpretation of the PCE coefficient properties is offered here. The severity of a function’s
nonlinearity with respect to its random input governs the required order of its PCE, with larger values of P

needed for more nonlinear functions. This is a consequence of the fact that nonlinear processes can
substantially distort the shape of an input pdf, so that the output distribution bears little resemblance to the
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input distribution. The nonlinearity of the sine function is variable in that it increases with time; that is, the
Taylor series of sinot requires many terms to retain accuracy for a given o when otb2p. Additional insight is
gained by examining the nonlinearity of xðtÞ versus x at a given time. Fig. 9 shows that it increases greatly with
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time; consequently, a global polynomial fit like the truncated WHa expansion is unable to keep pace with the
functional relationship between x and xðtÞ as time progresses.

These observations indicate that the combined effects of the non-stationary argument, ot, and the
increasing nonlinearity of the sine function at large times demand an ever-increasing order of PCE to retain
accuracy as time progresses. In this sense, although the expansion is guaranteed to be mean-square convergent
in the random domain (i.e., x or oðxÞ), uniform convergence is not guaranteed for the PCE of sinot. Low-
order terms are sufficient to reproduce the process for small times but even very high-order expansions are
inadequate at large times.

4. Wiener–Haar expansion and simulation of the sinusoidal model problem

4.1. Background

The results presented above show that the failure of the PCE of the sinusoidal process at large times is
induced by the increasingly nonlinear behavior of the process in the random dimension and the associated
transition to a distinctly bimodal density function. Figs. 4 and 9 offer two perspectives on these properties. In
Fig. 4, the nonlinearity and non-stationarity eventually map the Gaussian input pdf to an extremely bimodal
pdf on a bounded domain. The changes in Fig. 9 were explained intuitively by comparison with the poor
accuracy of the Taylor series of a sinusoid for large values of its argument.

These properties are difficult for a PCE to reproduce because of the global extent of the basis functions in
the random dimension. The authors hypothesized that a wavelet expansion would be better suited to
representing the complex random behavior of this process. The localization of behavior across multiple scales
should permit the bimodal behavior observed in Fig. 4 and the associated increasing frequency in the random
domain (Fig. 9) to be represented with sufficient accuracy.

This hypothesis was tested by employing the WHa expansion, as described in Eqs. (21)–(30). The frequency
of the sinusoidal process was defined by o ¼ 2pþ soðz� 0:5Þ, where z was uniformly distributed on ½0; 1�. A
COV of 0.6 was used instead of 0.1 to force the uniform random variable to include a range of values similar
to the Gaussian and uniform variables employed in the WHa and WLa expansions, respectively.

4.2. WHa results and discussion

Three approaches to evaluating the WHa coefficients are considered:
(1)
 We first describe the characteristics exhibited by the MCS-based WHa expansion because MCS is
commonly employed in non-intrusive Wiener expansions. MCS with 10,000, 20,000, and 40,000
realizations of the sinusoidal process was employed to evaluate statistical convergence. These sample
sets clearly are much larger than the 1000 samples used for the WHa and WLa expansions. This is
reasonable in that 1000 samples were more than sufficient to demonstrate the fundamental handicap of
spectral expansions for oscillatory random processes, whereas the large sample sets are employed for WHa
only to examine the statistical convergence of the non-intrusive multiresolution expansion. Section 4.2.1
contains an extensive discussion of the MCS results, and an attempt is made to equitably compare WHa
and WHa expansions with similar truncation levels. For each of the MCS ensembles, the WHa expansion
was truncated to either J ¼ 5 or 6. Including the single lowest approximation (i.e., mean or scaling
function) level, this required the estimation of 2Jþ1 expansion coefficients at each time step with 2J

coefficients at the finest resolution. Consequently, even moderate WHa expansions required the
computation of more coefficients than normally are computed in stochastic projections.
(2)
 Numerical integration with Simpson’s rule was applied to a uniformly spaced discretization of z 2 ½0; 1�.
This approach works, but we do not discuss this approach further because it offers no clear computational
advantage over MCS when there are substantial oscillations in the random dimension.
(3)
 The MCS ensembles mentioned above are much larger than can be hoped for in simulating complex
nonlinear systems. The results described in Section 4.2.2 show that the DWT or filter-based approach
offers substantial advantages over MCS for efficiently evaluating the WHa coefficients and simulating the
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process with many fewer samples. Mallat’s algorithm was used to compute the DWT with n ¼ 2Jþ1 evenly
spaced values of z. The DWT results were computed for J ¼ 7 or 256 samples. Comparison with lower
truncation levels, e.g., J ¼ 6, from the MCS results is straightforward because the pyramid algorithm can
be reversed to efficiently reconstruct the process at any coarser scale.
4.2.1. MCS-based expansion coefficients

Fig. 10 shows three realizations selected at random from the WHa expansion for J ¼ 5 and 10,000 MCS
realizations. Comparison with the Wiener–Hermite realizations in Fig. 6 shows that the energy loss at large
times appears to have been eliminated, but the amplitude of the simulations is still a random function of z

instead of one exactly. Close examination of a phase plane plot (not shown here) for one of the realizations
reveals a very slight, smooth decay of approximately 1.5% over the full duration for J ¼ 5; the decay for J ¼ 6
is closer to 0.5%, but it is still measurable. Because these decay rates are relatively low, the WHa amplitude is
defined herein as the maximum value observed during a given realization. Fig. 11, shows the estimated density
functions of the amplitude from 1000 simulated realizations based on the J ¼ 5 WHa expansion. The variance
decreases as the size of the original set of realizations increases from 10,000 to 40,000, but it is still larger than
desired.

A brief convergence study (see Table 1) was performed to examine the influence of the original ensemble size
and the expansion order on the statistics produced by the associated WHa expansion. Statistics were
computed from 1000 simulated realizations for each case. The mean amplitude of each set is close to the
others, but the estimated range and standard deviation definitely decrease with increasing sample size of the
original set.
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Table 1

Amplitude statistics for Wiener–Haar simulation of sinusoidal process

J Input realizations Min Max Mean Std. dev

5 10,000 0.8256 1.1455 1.0001 0.0792

20,000 0.8734 1.1612 0.9983 0.0539

40,000 0.8895 1.0973 1.0003 0.0374

6 10,000 0.7549 1.3311 1.0073 0.1181

20,000 0.7488 1.1274 1.0022 0.0856

40,000 0.8351 1.1584 0.9973 0.0619

Wiener–Haar expansion coefficients generated through Monte Carlo simulation.
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However, the amplitude variance increases with the order of the expansion, J, or resolution level, so that a
larger initial ensemble is required for estimating the higher-order expansion coefficients if the resulting
variance is to be maintained. This also is reflected in Fig. 12, which is the Wiener–Haar equivalent of the t ¼ 9
frame in Fig. 9. The J ¼ 6 curve exhibits oscillations around the peaks that are not present in the original data,
which is purely sinusoidal in x for any t. These peak oscillations exist in the MCS results, but not in the DWT
results described below. They occur because, as shown in Fig. 12, the higher truncation level pulls in wavelets
whose support is much less than the wavelength of the original data. As shown below, these piecewise-constant
wavelets have substantial secondary components at high frequencies and correspondingly short wavelengths.
Hence, the resulting coefficients become sensitive to local variations in the sampling density. A larger initial
ensemble should suppress this behavior, but as noted above, it is unlikely that such a large ensemble will be
available in practical applications.
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These observations quantify the trend already seen in Fig. 11 and indicate that the size of the original
ensemble strongly affects the convergence of the wavelet coefficients that encode the second and perhaps
higher moments. This implies that the amplitude variation produced by the WHa expansion is a consequence
of the both the truncation (i.e., resolution) level and the inherent variation in an MCS. Relatively slow
convergence of the WHa expansion was also observed by Le Maı̂tre et al. [16] in their application to
bifurcations of stochastic systems.

Interesting characteristics were also elicited by studying a WHa expansion with much coarser resolution,
J ¼ 3. The amplitude variance continued to decrease with the resolution level, so that the observed amplitudes
were generally more closely packed than for J ¼ 5 or 6. However, Fig. 13 shows that this resolution scale was
insufficient to maintain time accuracy because the decay observed in the spectral expansions reappeared,
although in a less severe form. The decay is noticeable but compares favorably with the 14th-order WHa
realizations (see the bottom frame of Fig. 6), which had a similar number of coefficients in the expansion (16
for WHa versus 15 for WHa). Moreover, the variance of the observed amplitudes before decay was much
smaller than those observed for WHa (e.g., Fig. 7 for P ¼ 10). The eventual decay in the J ¼ 3 WHa
simulations is caused by the inability of the coarse Haar wavelets to resolve the higher frequency oscillations in
the random dimension.

The kernel density estimators for the amplitude (Fig. 11) also obscure an important detail. The WHa
simulated amplitudes are actually constrained to a discrete set, with the number of admissible value limited by
the number of wavelets at the finest resolution scale. Fig. 14 vividly illustrates this by showing the observed
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amplitudes for J ¼ f3; 5; 6g as a function of z 2 ½0; 1�. This should be expected because the Haar series divides
the range of rv z into a set of disjoint intervals (i.e., a partition) such that each basis function is either 0 or �1
on a given interval. The finest division is Dz ¼ 1=2J , so the simulated process value at any given time is
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determined by the particular half of the interval ½k; k þ 1�Dz; k 2 f0; . . . ; 2J � 1g in which the sampled value of
z falls; other realizations of z can only be distinguished if they fall into separate resolution intervals.

The almost complete elimination of energy loss at large simulation times is a substantial improvement over
the WHa and WLa results. The ultimate source of this improvement lies in the ability of the wavelet basis to
capture localized behavior in the random dimension. Examination of the simulated density functions from
several time slices showed good reproduction of those from the original process (Fig. 4). This indicates that the
WHa expansion can indeed capture a wide range of probability distributions in a strongly non-stationary
process.

The non-stationary nature of the process is again reflected in the time dependence of the WHa expansion
coefficients. Fig. 15 shows the coefficient time histories for the scaling function and the coarser scales in the
WHa expansion for J ¼ 6. These are plotted through t ¼ 20 instead of t ¼ 10 for to illustrate the re-
appearance of lower scales as time progresses. This effect is discussed below.

Because the individual resolution scales are orthogonal in a MRA, the coefficients presented here are, except
for sampling variation, the same as those computed for J ¼ 3 and 5. The time dependence of the mean value is
captured in the scaling function coefficient (top frame of Fig. 15), which is similar to the first frame in Figs. 2
and 3. The first wavelet scale (j ¼ 0) is complementary to the scaling function in that when one of these is zero,
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the other is either at an extremum or also zero; this follows from the orthogonality of fðzÞ and c0ðzÞ. The j ¼ 1
and 2 coefficients grow and decay much like the WHa coefficients (Figs. 2 and 3), and the j ¼ 3 coefficients
grow over time to reflect the increasing oscillation frequency in the random dimension, which was illustrated
in Fig. 9 for the normally distributed frequency. The dominance of the higher scales at large times is driven by
the large pdf peaks near x ¼ �1 (see Fig. 4), which can be synthesized only by the finer scale wavelets.

The re-growth of the cð1Þ components around t ¼ 8 is associated with the multiple frequencies contained in
each Haar basis functions. The Fourier transform of the mother wavelet can be written as [23]

dcð0ÞðnÞ ¼ Z 1
�1

cð0ÞðzÞe�2pinz dt ¼ ieipn
1� cos pn

pn

� �
. (32)

It follows that ccðjÞk ðnÞ ¼ 2�j=2e
�2pkn
2j dcð0Þ n

2j

� �
, (33)

where n is the frequency in the z-dimension (see Fig. 16); hence, j
ccðjÞk ðnÞj oscillates and decays with increasing

frequency. As oðzÞt grows over time, the z-dimension oscillations gradually move into and out of correlation
with Haar wavelets whose fundamental wavelengths are longer than that of the process at a given time. This
effect is illustrated in Fig. 15, which shows the coefficients for a process with twice the original duration and
the same distribution parameters as Fig. 15. The longer-scale components experience multiple growth and

decay periods as time passes and the individual modes of each wavelet are excited. The decay of j
ccðjÞk ðnÞj with

increasing n is reflected in the lower amplitude of each succeeding high-correlation phase in the associated

d
ðjÞ
k . This behavior does not noticeably affect the simulation quality, which continues to exhibit a very

slight, smooth temporal decay.
An interesting characteristic of the coefficient time histories is the increase in their frequency as k, the

translation parameter, increases in a given scale. This is clear even in d
ð1Þ
1 , which oscillates more rapidly than

d
ð1Þ
0 , and the trend continues for higher scales. As k, the translation parameter, increases with j fixed, cðjÞk ðzÞ

becomes centered on a higher value of z, which in turn isolates a higher frequency, oðzÞ ¼ 2pþ soðz� 0:5Þ.
The result is that each wavelet coefficient oscillates in time at the frequency around which it is centered and
grows or decays to reflect the relative importance of the scale it represents in the random dimension; these are
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Fig. 16. Absolute value of the Fourier transform of the Haar mother wavelet.
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the scales present in the time slices shown in Fig. 9. Increasing the resolution of the WHa expansion permits it
to encode a more finely discretized set of temporal frequencies while simultaneously providing the ability to
capture higher frequencies or more irregularity in the random dimension. It is this combination of traits that
enables the WHa expansion to represent the sinusoidal stochastic process more effectively than the global
bases of the WHa and WLa expansions.

4.2.2. WHa coefficients from Mallat’s pyramid algorithm

As noted above, only 256 evenly-spaced samples were needed to compute the J ¼ 7 WHa expansion
through Mallat’s pyramid algorithm. Fig. 17 shows the great increase in accuracy of the WHa expansion when
Mallat’s algorithm for the DWT is used to compute the coefficients instead of MCS or numerical integration.
In particular, the bottom left frame of this figure, which is for t ¼ 9, should be compared with the J ¼ 5 frame
in Fig. 12. The current approach for evaluating the projections tracks the oscillations in the random dimension
with much greater consistency than MCS. Each plot in Fig. 17 actually shows the WHa simulations overlaid
on the original data. Except for the piecewise nature of the WHa plots, the curves are almost indistinguishable.
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Higher truncation levels are not shown simply because they cannot be visually distinguished from the exact
results without great magnification. The only noticeable discrepancy between the simulated and original
process in this case is a localized boundary distortion, which is almost imperceptible in Fig. 17 near z ¼ 1. This
distortion might be mitigated by standard methods, such as periodic or symmetric extension of the data. Aside
from the boundary distortion and numerical errors due to finite precision arithmetic, the Mallat-based WHa
expansion yields perfect reconstruction of the original data, so that no significant variation occurs in the
simulated amplitude of the sinusoid.

Not only does the Mallat-based WHa expansion produce much higher accuracy for a given number of
samples than the MCS and numerical integration approaches, it does so with much greater computational
speed. No formal timing study was performed, but the inherent efficiency of the pyramid algorithm is
reflected in the well-known result that it is an OðnÞ process when the quantity of data being transformed
is a power of two [25]; therefore, the DWT-based WHa expansions demonstrated herein require OðnÞ

operations at each time step to compute all of the expansion coefficients. In contrast, MCS and numerical
quadrature are OðnÞ for each individual coefficient (e.g., see Eq. (30)), or Oð2Jþ1nÞ for all of the coefficients at
each time step.

Fig. 17 also emphasizes again the periodic nature of the sinusoidal process in the random dimension. As
noted in Section 1, Millman et al. [14] employed a spectral Wiener expansion with a Fourier basis to
compensate for the failure of the Hermite basis functions to properly reproduce limit cycles in a simple
aeroelastic model problem. The apparent utility of this approach seems to be corroborated by the obvious
periodicity in Fig. 17. However, the primary aspect of a nonlinear system that exhibit limit cycles is not the
limit cycles themselves but the Hopf bifurcation that produce these limit cycles, in particular when the
bifurcation is subcritical. In this regard the WHa expansion should be far superior to the Fourier-based chaos
expansion. This is because, as demonstrated in the next section, the subcritical bifurcation appears as a step
discontinuity in random dimension; see Figs. 21 and 23 for examples. This discontinuity should present a
difficult convergence problem for the Fourier chaos expansion, just as a step leads to poor local convergence
for a traditional Fourier series expansion in time or space. Results presented in the next section show that the
WHa expansion incorporates the step discontinuity with little difficulty.
5. Wiener–Haar expansion of an elementary nonlinear system

The WHa expansion has been shown to successfully capture the fundamental traits of the sinusoidal model
problem. A logical intermediate step before extending it to computationally expensive aeroelastic problems is
to study its performance with a more elementary nonlinear system that undergoes a Hopf bifurcation. We
employ a generalization of a simple model that exhibits a subcritical Hopf bifurcation, as described by
Strogatz [27]. The governing equations are:

_x ¼ c1xþ c2yþ c3xyþ c4x
5, ð34Þ

_y ¼ c5xþ c6yþ c7y3 þ c8y
5. ð35Þ

The fifth-order terms were added Strogarz’s example to restrain the oscillation amplitude and thereby induce a
limit cycle after the bifurcation occurs. In the results described here, c1 ¼ c6 is the bifurcation parameter,
which is set at �0:2. Parameter c7 is modeled as a uniform random variable between 0:5 and 1:0, so that its
mean or baseline value is 0:75. This parameter was chosen to be random because it plays a role similar to
nonlinear stiffness terms in certain canonical aeroelastic systems (e.g., see the recent papers by Pettit and
Beran [3,4]). The other parameters are fixed at c2 ¼ �1, c3 ¼ 1, c4 ¼ c8 ¼ �0:25 and c5 ¼ 1. The initial
conditions are fixed at xð0Þ ¼ yð0Þ ¼ 0:6.

The system was numerically integrated with the ode23 algorithm in Matlab 7. Results were generated for
0ptp100 with a specified time step of Dt ¼ 0:01, so that 10; 001 time samples were computed for each
realization. Fig. 18 shows a typical limit cycle for this system. Numerical experimentation shows that the
occurrence and amplitude of limit cycles for this system is sensitive to parameter c7 and the initial conditions,
but only randomness in c7 was studied.
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5.1. Stochastic analysis and simulation of the nonlinear model problem

Mallat’s DWT algorithm was used to evaluate the time-dependent WHa expansion coefficients because of
its superior speed and resolution convergence. As noted above, only c7 was allowed to be random; i.e.,
c7ðzÞ ¼ 0:5þ 0:5z, where z is uniformly distributed on ½0; 1�. The range of variation was chosen so that both
decaying oscillations and limit cycles would occur. An ensemble of 256 realizations, each with 10; 001 evenly
spaced samples for 0ptp100, was generated at evenly spaced values of z to facilitate easy implementation of
the DWT. As for the sinusoidal problem, no effort was made avoid boundary effects in the DWT. Using the
notation defined above, n ¼ 256 realizations corresponds to a maximum resolution level J ¼ 7.

Figs. 19 and 20 illustrate the J ¼ 5 WHa simulation for z ¼ 0:682 and 0.780, respectively. These values were
selected because they typify the best and worst levels of expansion accuracy. The phase plane plots show that
the truncated WHa expansion captures the essence of the long-term dynamics, but the time histories, xðtÞ,
show that the expansion error at a given time,

eðt; zÞ ¼ xapproxðt; zÞ � xðt; zÞ (36)

can be small (Fig. 19(c)) or large (Fig. 20(c)). If the goal of the simulation were to determine the likelihood of
limit cycles developing, this variability in time accuracy might be tolerated; however, time accurate simulations
certainly would require more terms to be retained in the expansion.

Two long-term response quantities are presented to demonstrate the general efficacy of the WHa analysis
and reduced resolution simulations across the full range of random parameter values: the simulated values of
xðt; zÞ at t ¼ 90:00 and the maximum value of jxj for t480. The second metric was chosen to allow the system
sufficient time to either achieve a converged limit cycle or decay to zero response. The alloted time interval is
sufficient to ensure that the post-bifurcation realizations complete at least a full limit cycle before the long-
term amplitude is recorded. The WHa-based simulations discussed herein include 256 MCSs based on sample
of c7. Only simulations at wavelet resolution levels J ¼ 4 and 5 are presented to illustrate the convergence of
the multiresolution-based expansions. The two highest resolutions, J ¼ 6 and 7, are not shown because, other
than in the neighborhood around z ¼ 0:3, they are practically indistinguishable from the original data at
normal magnification.

Fig. 21 compares simulations to the original data at t ¼ 90:00. The WHa expansion easily localizes
oscillations and sharp changes in the random dimension. The nonlinear sensitivity to c7ðzÞ is quite evident in
the sudden appearance of substantial response for z close to 0.3. The primary shortcoming of the WHa
expansion is the piecewise constant nature of the Haar basis functions, which are not well suited to precisely
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tracking smooth variations. However, this trait is acceptable when weighed against the substantial
improvement in the long-term accuracy over chaos expansions with global basis function. Future work
should explore using a more general MRA to improve the tracking of smooth features.

An alternate view of the simulated response at t ¼ 90:00 is provided by Fig. 22, which shows the estimated
density functions for J ¼ 4 and 5. The tails of these distributions exceed the actual range of sampled response
values because of the finite kernel width employed in generating the estimated densities. Nevertheless, a small
but noticeable consequence of the reduced resolution is the truncation of the tails as extrema of the oscillations
in the random dimension (Fig. 21) are chopped off by the larger scales in the truncated Haar basis.

The maximum value of jxj for t480 is depicted in Fig. 23 for the same values of c7ðzÞ and resolution levels in
Fig. 21. The nonlinear sensitivity to c7 is again obvious in the large jump as z passes through the neighborhood
of 0:3. Two primary consequences of simulating with low wavelet resolutions are noted: (1) the actual c7
bifurcation point can only be determined imprecisely relative to the full-order system, and (2) reducing the
resolution of the simulations is somehow similar in effect to employing greater fifth-order stiffness in the full-
order system, especially for high values of the random parameter, because the limit cycle amplitudes are lower
than in the full model. This observation is based on the fact that the fifth-order stiffness terms in Eq. (34) are
responsible for restraining the post-bifurcation oscillation amplitude. However, expansion resolution and
fifth-order stiffness clearly should not be confused in this case because it was the third-order stiffness that was
made random. The confusion arises because, as noted for the sinusoidal problem, reducing the resolution
chops off the extreme values of the oscillations in the random dimension.

6. Concluding remarks and future work

Recent studies have shown that random variability in system parameters, loads, and BCs can induce
significant changes in the stability of nonlinear aeroelastic systems. These factors motivate current research to
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substantially improve our ability to predict the range of behaviors a future aeroelastic system could exhibit.
Stochastic expansions are expected to be an important tool in computational frameworks for high fidelity
simulations of nonlinear aeroelastic systems, which commonly undergo bifurcations that lead to self-excited
but stable oscillatory responses.

The key problem described above in using Wiener expansions to model a stochastic oscillatory process is the
lack of long-term accuracy induced by the truncation of higher-order terms in the spectral basis for the
random dimension. This problem is substantially resolved by employing a MRA in the random dimension.
The Haar basis adapts naturally to the evolution of the frequency content in the random dimension as time
passes, so that dominant features of the long-term response can be captured even by relatively low-order
expansion.

Employing the WHa expansion for oscillatory stochastic systems has the additional advantage of providing
a digital filter approach, known as Mallat’s pyramid algorithm, to evaluating the expansion coefficients. It is
found that the pyramid algorithm is substantially more efficient and accurate for evaluating WHa expansion
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coefficients than MCS or numerical quadrature. However, practical use of the non-intrusive formulation
described herein for simulating realistic systems will require more efficient time-accurate computations to
enable quicker calculation of the WHa coefficients. Reduced-order methods are being considered for this role
in future studies.
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